88 resultados para Epithelial-cells

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inheritance of a mutant allele of the von Hippel-Lindau tumor suppressor gene predisposes affected individuals to develop renal cysts and clear cell renal cell carcinoma. Von Hippel-Lindau gene inactivation in single renal tubular cells has indirectly been showed by immunohistochemical staining for the hypoxia-inducible factor alpha target gene product carbonic anhydrase IX. In this study we were able to show von Hippel-Lindau gene deletion in carbonic anhydrase IX positive nonneoplastic renal tubular cells, in epithelial cells lining renal cysts and in a clear cell renal cell carcinoma of a von Hippel-Lindau patient. This was carried out by means of laser confocal microscopy and immunohistochemistry in combination with fluorescence in situ hybridization. Carbonic anhydrase IX negative normal renal tubular cells carried no von Hippel-Lindau gene deletion. Furthermore, recent studies have indicated that the von Hippel-Lindau gene product is necessary for the maintenance of primary cilia stability in renal epithelial cells and that disruption of the cilia structure by von Hippel-Lindau gene inactivation induces renal cyst formation. In our study, we show a significant shortening of primary cilia in epithelial cells lining renal cysts, whereas, single tubular cells with a von Hippel-Lindau gene deletion display to a far lesser extent signs of cilia shortening. Our in vivo results support a model in which renal cysts represent precursor lesions for clear cell renal cell carcinoma and arise from single renal tubular epithelial cells owing to von Hippel-Lindau gene deletion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cancer most probably originates from stem/progenitor cells and exhibits a similar cell hierarchy as normal tissues. Moreover, there is growing evidence that only the stem cells are capable of metastasis formation. We have previously shown that overexpression of a dominant negative ephrin-B2 mutant interferes with mammary gland differentiation and confers a metastatic phenotype to NeuT-induced mammary tumors with an increase in cells with stem/progenitor characteristics. To investigate the role of ephrin-B2 in the control of the mammary stem cell niche, we analyzed the mammary stem and progenitor cell populations in transgenic mice overexpressing the mutant ephrin-B2. Quantification by FACS analysis revealed a significant increase of cells in the basal/alveolar cell-, the bi-potent progenitor- and the stem cell-enriched fractions. Moreover, the supposed precursors of estrogen receptor-positive cells were elevated in the stem cell-enriched fraction. In contrast, the epithelium from transgenic mice overexpressing the native ephrin-B2 gene showed an augmentation of the luminal cell- and the bi-potent progenitor-enriched fractions. Repopulation assays revealed that the epithelial cells of truncated ephrin-B2 transgenic epithelial cells have a higher regeneration capacity than those of controls and of native ephrin-B2 transgenic mice, confirming the augmentation of stem cells. Morphologically, these outgrowths exhibited impaired basal/luminal compartmentalization and epithelial polarization. These results demonstrate that deregulated ephrin-B2 expression interferes with the regulation of the stem cell niche and leads to a shift of the differentiation pathway and may thereby contribute to the acquisition of the metastatic phenotype long before carcinogenic growth becomes apparent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rhinoviruses are important triggers of pulmonary exacerbations and possible contributors to long-term respiratory morbidity in cystic fibrosis (CF), but mechanisms leading to rhinovirus-induced CF exacerbations are poorly understood. It is hypothesised that there is a deficient innate immune response of the airway epithelium towards rhinovirus infection in CF.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microfluidic systems have become competitive tools in the invitro modelling of diseases and promising alternatives to animal studies. They allow obtaining more invivo like conditions for cellular assays. Research in idiopathic pulmonary fibrosis could benefit from this novel methodological approach to understand the pathophysiology of the disease & develop efficient therapies. The use of hepatocyte growth factor (HGF) for alveolar reepithelisation is a promising approach. In this study, we show a new microfluidic system to analyse the effects of HGF on injured alveolar epithelial cells. Microfluidic systems in polydimethylsiloxane were fabricated by soft lithography. The alveolar A549 epithelial cells (10,000 cells) were seeded and studied in these microfluidic systems with media perfusion (1μl/30min). Injury tests were made on the cells by the perfusion with media containing H2O2 or bleomycin. The degree of injury was then assessed by a metabolic and an apoptotic assays. Wound assays were also performed with a central laminar flow of trypsin. Monitoring of wound closure with HGF vs control media was assessed. The alveolar A549 epithelial cells grew and proliferated in the microfluidic system. In the wound closure assay, the degree of wound closure after 5 hours was (53.3±1.3%) with HGF compared to (9.8±2.4%) without HGF (P <0.001). We present a novel microfluidic model that allows culture, injury and wounding of A549 epithelial cells and represents the first step towards the development of an invitro reconstitution of the alveolar-capillary interface. We were also able to confirm that HGF increased alveolar epithelial repair in this system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Microfluidics system are novel tools to study cell-cell interactions in vitro. This project focuses on the development of a new microfluidic device to co-culture alveolar epithelial cells and mesenchymal stem cells to study cellular interactions involved in healing the injured alveolar epithelium. Methods: Microfluidic systems in polydimethylsiloxane were fabricated by soft lithography. The alveolar A549 epithelial cells were seeded and injury tests were made on the cells by perfusion with media containing H2O2 or bleomycin during 6 or 18hrs. Rat Bone marrow derived stromal cells (BMSC) were then introduced into the system and cell-cell interaction was studied over 24 hrs. Results: A successful co-culture of A549 alveolar epithelial cells and BMS was achieved in the microfluidic system. The seeded alveolar epithelial cells and BMSC adhered to the bottom surface of the microfluidic device and proliferated under constant perfusion. Epithelial injury to mimic mechanisms seen in idiopathic pulmonary fibrosis was induced in the microchannels by perfusing with H2O2 or bleomycin. Migration of BMSC towards the injured epithelium was observed as well as cell-cell interaction between the two cell types was also seen. Conclusion: We demonstrate a novel microfluidic device aimed at showing interactions between different cell types on the basis of a changing microenvironment. Also we were able to confirm interaction between injured alvolar epithelium and BMSC, and showed that BMSC try to heal the injured epitelium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The heparin-binding epidermal growth factor-like growth factor (HB-EGF) has been implicated in wound-healing processes of various tissues. However, it is not known whether HB-EGF may represent a factor implicated in overstimulated wound-healing processes of the retina during proliferative retinopathies. Therefore, we investigated whether human retinal pigment epithelial (RPE) cells, which are crucially involved in proliferative retinopathies, express and respond to HB-EGF. RPE cells express mRNAs for various members of the EGF-related growth factor family, among them for HB-EGF, as well as for the EGF receptors ErbB1, -2, -3, and -4. The gene expression of HB-EGF is stimulated in the presence of transforming and basic fibroblast growth factors and by oxidative stress and is suppressed during chemical hypoxia. Exogenous HB-EGF stimulates proliferation and migration of RPE cells and the gene and protein expression of the vascular endothelial growth factor (VEGF). HB-EGF activates at least three signal transduction pathways in RPE cells including the extracellular signal-regulated kinases (involved in the proliferation-stimulating action of HB-EGF), p38 (mediates the effects on chemotaxis and secretion of VEGF), and the phosphatidylinositol-3 kinase (necessary for the stimulation of chemotaxis). In epiretinal membranes of patients with proliferative retinopathies, HB-EGF immunoreactivity was partially colocalized with the RPE cell marker, cytokeratins; this observation suggests that RPE cell-derived HB-EGF may represent one factor that drives the uncontrolled wound-healing process of the retina. The stimulating effect on the secretion of VEGF may suggest that HB-EGF is also implicated in the pathological angiogenesis of the retina.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Invasion of non-professional phagocytes is a strategy employed by several mucosal pathogens, but has not been investigated in detail for Moraxella catarrhalis, a major cause of human respiratory tract infections. We investigated the role of outer membrane protein (OMP) UspA1 and lipooligosaccharide (LOS) in M. catarrhalis invasion into epithelial cells. An isogenic mutant of strain O35E, which lacked expression of the UspA1 adhesin, demonstrated not only severely impaired adherence (86%) to but also reduced invasion (77%) into Chang conjunctival cells in comparison with the wild-type strain. The isogenic, LOS-deficient mutant strain O35E.lpxA was attenuated in adherence (93%) and its capacity to invade was severely reduced (95%), but not abolished. Inhibition assays using sucrose and cytochalasin D, respectively, demonstrated that clathrin and actin polymerization contribute to internalization of M. catarrhalis by Chang cells. Furthermore, inhibition of UspA1-mediated binding to cell-associated fibronectin and alpha5beta1 integrin decreased invasion of M. catarrhalis strain O35E (72% and 41%, respectively). These data indicate that OMP UspA1 and LOS profoundly affect the capacity of M. catarrhalis to invade epithelial cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Staphylococcus aureus, a leading cause of chronic or acute infections, is traditionally considered an extracellular pathogen despite repeated reports of S. aureus internalization by a variety of non-myeloid cells in vitro. This property potentially contributes to bacterial persistence, protection from antibiotics and evasion of immune defenses. Mechanisms contributing to internalization have been partly elucidated, but bacterial processes triggered intracellularly are largely unknown. RESULTS: We have developed an in vitro model using human lung epithelial cells that shows intracellular bacterial persistence for up to 2 weeks. Using an original approach we successfully collected and amplified low amounts of bacterial RNA recovered from infected eukaryotic cells. Transcriptomic analysis using an oligoarray covering the whole S. aureus genome was performed at two post-internalization times and compared to gene expression of non-internalized bacteria. No signs of cellular death were observed after prolonged internalization of Staphylococcus aureus 6850 in epithelial cells. Following internalization, extensive alterations of bacterial gene expression were observed. Whereas major metabolic pathways including cell division, nutrient transport and regulatory processes were drastically down-regulated, numerous genes involved in iron scavenging and virulence were up-regulated. This initial adaptation was followed by a transcriptional increase in several metabolic functions. However, expression of several toxin genes known to affect host cell integrity appeared strictly limited. CONCLUSION: These molecular insights correlated with phenotypic observations and demonstrated that S. aureus modulates gene expression at early times post infection to promote survival. Staphylococcus aureus appears adapted to intracellular survival in non-phagocytic cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glucocorticoids are anti-inflammatory steroids with important applications in the treatment of inflammatory diseases. Endogenous glucocorticoids are mainly produced by the adrenal glands, although there is increasing evidence for extra-adrenal sources. Recent findings show that intestinal crypt cells produce glucocorticoids, which contribute to the maintenance of intestinal immune homeostasis. Intestinal glucocorticoid synthesis is critically regulated by the transcription factor liver receptor homologue-1 (LRH-1). As expression of steroidogenic enzymes and LRH-1 is restricted to the proliferating cells of the crypts, we aimed to investigate the role of the cell cycle in the regulation of LRH-1 activity and intestinal glucocorticoid synthesis. We here show that either pharmacological or molecular modulation of cell cycle progression significantly inhibited expression of steroidogenic enzymes and synthesis of glucocorticoids in intestinal epithelial cells. Synchronization of intestinal epithelial cells in the cell cycle revealed that expression of steroidogenic enzymes is preferentially induced at the G(1)/S stage. Differentiation of immature intestinal epithelial cells to mature nonproliferating cells also resulted in reduced expression of steroidogenic enzymes. This cell cycle-related effect on intestinal steroidogenesis was found to be mediated through the regulation of LRH-1 transcriptional activity. This mechanism may restrict intestinal glucocorticoid synthesis to the proliferating cells of the crypts.